Introduction

Repair of bone defects using artificial bone grafts

It is necessary to accelerate osteogenic differentiation of bone marrow cells which adhere on artificial bone grafts for early fixation between host bone and bone graft.

Previous studies:

- Development of surface roughness, wettability and morphology of bone grafts
- Novel treatment is required to improve fixation between host bone and artificial bone graft.

We focused on piezoelectric thin film coat on bone graft

It is expected that stress-generated potential on piezoelectric thin film can enhance osteogenic differentiation of bone marrow cells in vivo.

Barium titanate (BaTiO₃) ↓ Biocompatible lead-free material

High piezoelectric property

Previous studies

- There is no report about the effects of potential of piezoelectric ceramics on bone marrow cells under dynamic loading in vitro.

Objective

To investigate the effects of cyclic surface potential of BTO ceramics with deformation on osteogenic differentiation of rat bone marrow cells in vitro.

Materials and Methods

BTO ceramics

- Polarized BTO
- Non-polarized BTO

Cell seeding

Seeded at 3.0 × 10⁴ cells/cm² on polarized BTO and non-polarized BTO.

Culture medium

DMEM + 10%FBS Antibiotics
10 nM Dexamethasone
10 mM β-Glycerophosphate
82 μg/ml Ascorbic acid

Dynamic cultivation for 6 and 9 days

Stimulation condition

- Compressive waveform
- Sinusoidal wave

Maximum strain of BTO (με) 65

- DNA amount
- Alkaline phosphate activity (ALP activity)

Results and Discussion

Surface potential of BTO ceramics

<table>
<thead>
<tr>
<th></th>
<th>Polarized BTO</th>
<th>Non-polarized BTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface potential by spontaneous polarization</td>
<td>-1.44 V</td>
<td>-1.54 V</td>
</tr>
<tr>
<td>Surface potential by deformation</td>
<td>8.37 V</td>
<td>7.5 V</td>
</tr>
</tbody>
</table>

- There was no difference in ALP activity in all conditions.

Effects of piezoelectric stimulation on ALP activity

- There was no difference in ALP activity in all conditions.

6 days cultivation

- ALP activity was not affected by spontaneous polarization.
- ALP activity was affected by strain of BTO ceramics with deformation.
- ALP activity was much affected by synergistic effects of surface potential and strain of BTO ceramics compared with only strain.

Surface properties

- Difference in ALP activity was not affected by surface properties of BTO ceramics.
- Surface potential of polarized BTO enhances osteogenic differentiation of bone marrow cells.

Conclusions

It is suggested that surface potential of polarized BTO enhances osteogenic differentiation of rat bone marrow cells under dynamic loading in vitro.